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ABSTRACT

‘I In this paper, we will present a new representation of a probability
density function on the three dimensional rotation group, SO(3), which
generalizes the exponential Fourier densities on the circle. As in the
circle case, this class of densities on 80(3) is also closed under the
operation of taking conditional distributions. Several simple multistage
estimation and detection models will be considered in this paper. The
closure property enables us to determine the sequential conditional den-
sities by recursively updating a finite and fixed number of coefficients.
It also enables us to express the likelihood ratio for signal detectionq explicitly in terms of the conditional densities.

\ An error criterion, which is compatible with a Riemannian metric,
• will be introduced and discussed in this paper. The optimal orientation

estimates with respect to this error criterion will be derived for a given
• probability distribution, illustrating how the updated conditional densi-

ties can be used to sequentially determine the optimal estimates on 50(3).

This research was sponsored by the Air Force Office of Scientific Research ,
Air Force Systems Cousand, USAP, Under Grant No. AFOSR-74-2671.B.
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t. Introduction

Rigid body rotations are involved in many important practical problems

of detection, estimation, and control. Some notable examples can be found

in gyroscopic analysis and satellite attitude determination and control.

J 

while linearization and approximation techniques have, led to many useful

results, simple analytic tools which will enable us to analyze and synthe-

size the optimal structures have long been desired.

Optimal estimation and detection schemes for discrete—time processes

• whose state space is a circle or sphere have been obtained in [1] and [2)

by using a novel representation for probability densities which has the

form exp f where f is a finite linear combination of functions which

form a complete orthogonal system on the state space involved. In the case

of the circle, circular functions were used, while both spherical harmonics

• 1% and multiple trigonometric functions were employed for densities defined on

the sphere.

In this paper the same approach will be taken for discrete—time rotation-

al processes by introducing a similar exponential density referred to as a

rotational exponential Fourier density (REFD) defined on the group of rota-

tions of three—dimensional space, that is obtained by using a sequence of

- irreducible unitary representations which form a complete orthogonal system

on SO(3). It can be shown that a continuous density function on SO(3)

can be approximated by such a REFD as cloaàty~ as we wish in the snace

of square integrable functions .

As in the circle case , the class of REFD1s of a certain f inite order is

• closed under the operation of taking conditional distributions as a consequence

• of the group structure of SO(3). We note that there does not exist such a

• — 2 —
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closure property in the sphere case [2] and a combined usage of two kinds of

exponential densities is required to treat analogous estimation and detection

problems on the sphere. It uill become clear in the sequel that it is exactly

this closure property of REFD ’s that yields simple estimation and detection

J 

schemes which update the sequential conditional densities by recursively

revising a finite and fixed number of parameters.

One drawback of REFD’s is that there is no known closure property of

convolution, which places a restriction on the type of rotational signal

• • ) processes that can be considered for the above approach. More specifically,

the rotational signal process considered in this paper disallows random driving

terms. Given two orientations of a rigid body which are represented by two

points on SO (3), the minimal angle in radians required to bring one into the

other is a Riemannian metric on SO(3) and is a natural measure of the distance

between them.

An error criterion for orientation estimation, which is compatible with

this measure of distance will be introduced in this paper. It is compatible in

the sense that it is an increasing function of this Riemannian metric. Various

descriptions and properties of this criterion will be discussed. The optimal

orientation estimate and its estimation error with respect to this error

\ criterion will be derived for a given probability distribution, thereby

• illustrating how the updated conditional densities can be used to sequentially

determine the optimal estimates of the rigid body orientations.

It should be mentioned that estimation for continuous—time directional

processes on SO(3) has been considered in [9) and [10].
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II. Preliminaries and Rotational Exponential Fourier Densities

A rotation of three—d imensional Euclidean apace about a fixed point can

be described analytically as a linear transformation of the space that

preserves distances , leaving the origin unchanged , which can be represented

by an orthogonal matrix . In this paper we will be concerned with the group

J 

of rotations , denoted by SO(3), that consists of those rotations whose matrix

representation has determinant equal to +1; that is, we are excluding those

rotations that consist of a rotation followed by a reflection. There are

• several different ways of parametrizing SO(3) such as by Euler angles, unit

• ) quaternions, direction cosines, and Cayley—IClein parameters which are all

discussed in [3). While we will have occasion to refer to all of these methods,

it will be customary to parametrize any rotation R belonging to SO(3) by

a triple of Euler angles (4 , 0 ,qi) which determine the rotation according to

the following sequence of rotations [4, p.107):

(i) a rotation through the angle 4,O ~ < 2~r , about the z—axis,

(ii) a rotation through the angle 0,0 ~ 0 < iT , about the new x—axis,

(iii) a rotation through the angle ~,0 ~ < 2i1 , about the new z—axis.

These rotations are illustrated in Figure 1, with x, y, z being the f inal

position of the three coordinate axes.
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An orthogonal matrix R that corresponds to this rotation can be obtained

as the product of the three matrices correspond ing to the rotations (i) , (ii) ,

(iii) : R — Z(4))X ( e)Z(ip) where

J 

cos 4) — sin 4> 0 1 0 0
= 

1 
sin 4) cos 4> 0 X(0 ) = 0 cos 0 — sin e

[ o  0 1 0 sin O cos O

so that

• ) 
cos 4) cos — COS 4) sin 4) sin 4) sin 0

— sin 4) cos 0 sin 4) — sin 4> cos 4) cOs 0

R =  sin 4 > c o s 4) — s in 4 ) s i n 4) — cos 4) sin 0
+ cos 4) sin 4) cos 0 + cos 4> COB 4) cos 0

sin 4) sin 0 cos 4, sin 0 cos 0

• We note that each element of SO(3) can be parametrized by some triple of

Euler angles; however, when 0 = 0 or ii this parametrization is not

unique.

To obtain useful spec ial f unctions that are defined on SO(3) we shall

consider the matrix elements of a sequence of group representations of SO(3).

• j It should be recalled that a group represen tation, which is described in

4
~ 

detail in [5] — [71 can be thought of as simply a group of matrices to which

the group S0(3) is homomorphic . In particular , we will use the sequence of

finite—dimensional unitary representations {D~ (4>,O,4)), P~ — 0,1 ...) attri—

buted to E. P. Wigner whose components are described in [6, p.144] by:

• (2) DL(4>~0~4,)ma — 
~~~~~~~~~~~~~~~~~~~~

- 5 -  
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(3) dL (~) 
29’[(L4m)!( m)!3~~~ d (cos e)L~~ 

(cos 0 — l)2’~~(l+cos 0)~’~~

I :
where m and n are integers such that — 9’ ~ m,n ~ 9’

(7

It is proved in [7, pp.233—284] that the functions D
~

(P
~
)an — D

form a complete orthogonal system in the space of square integrable functions

f f(4),e,p) , 0 ~ 0 < ir , 0 ‘~ ~~~~~ < 2rr , with respect to the inner product

~~ 2ff IT 2iT
= ~ J0 10 10 f1(4),0,4,) f2( 4 , 0,>p) sin8d4>d0d4, .

t 

• The completeness of this system in the Hu bert space of square integrable

f imctions defined on the rotation group is analogous to that of the circular

functions on the circle, S
1 
, and , also, that of the spherical harmonics on the

sphere, S

We now define a rotational exponential Fourier density of order N to be

denoted by REFD (N) as a probability density defined on SO(3) of the form

(4) p(R) = p(4),0,4)) =exp f(4),0,4,)

N 9’
f(4),0,4)) = ~ a9’_D

9’(4),O,4))
L0 m,n=—& ~~~~

,

• 
- where a° is a normalizing constant and all other coefficients a9’ are00 sin

arbitrary complex numbers. En addition to the completeness property, another

reason for our choosing this class of special functions is that for continuous

densities we have the following approximation theorem, which is a generalization

of Theorem 1 in [1].

— 6 —
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Theorem 1. Let p be a probability density on S0(3) . Assume that p is

• continuous. Then for any given positive number c , there exists an REED ,

• 
~N~

4>
~°

’4)
~ 

= exp 
~ 

a.9’
maD9’(4), 0 ,4))ma , such that H~~~ 

— 
~ N ’ 1  ~ c .

£—O m,n——9’

Proof. Assume that

inf{p(x) : x C S0(3)} = c > 0 •

This assumption can be removed in exactly the same way as in the proof of

) 
Theorem 1 of [1]. We note that f(x) =9’n p(x) is now well defined and also

continuous on SO(3).

Since SO(3) is compact, in view of the Peter—Weyl Theorem [6, p.99], for

any 0 < S < 1 , there is a linear conbination of Di , say
4 N( 6) £

rJ • f~s 
= I I a9’ (S)D , such that h f 6 — f IL < c • It follows that

9’aO m ,n=—9’
J I ~6 IL < 1 +  J I ~J L =  :M . 

1 1Define a function g : R + R by

~ exp x , x~~~M
g(x) =

I exp M , x~~~M

• and an operator G on the set of real functions on S0(3) by (Gu)(x) g(u(x))

\ 

It is obvious that g satisfies the Careth~odory conditions [14, p.20] and

G transforms every function in L
2
(SO(3)) into a function in L

2
(S0(3)).

~~~ By Theorem 2.1 of [14, p.22], the operator C is continuous. Hence

given any € > 0 , there exists a 6 > 0 such that if h f 1 — f II < ~
- 

.5 then 11Gf 1 — Cf 
~ 

< e • We choose f
1 

= f6 . Then hj e x p  f~— pH —

I IGf 6 — Cf I I  . This completes the proof.

• — 7 —  
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Remark. We note that f6 
is not necessarily the N(6)—th. order partial sum

of the Fourier expansion of f • Thus in contrast to Theorem 1

of [1], it is not necessarily true that £imulexp 
~~~~ 

— ~I I  — 0 , which is

very useful in determining 
~N 

in the statement of Theorem 1. Such a

J 
deficiency can be removed, if we require p to be twice continuously

differentiable. This extra requirement ensures that in p for p > 0 ,

may be expanded in an absolutely and uniformly convergent Fourier series in

terms of the rotational harmonics, D~ [15, p.513]. Thus the Peter—Wey l

• 
Theoreip is not needed for uniform approximation of a continuous function.

A remark is in order about (4). From our choice of Euler angle para—

metrization, it is easily seen that if the range of permissible values of

4>,0,4, is ignored, then a rotation with Euler angles (4)-lit, — 0 ,4*ir)

would be equivalent to the rotation R with Euler angles (4),0,4)) in the

• sense that the final positions of the coordinate axes would be identical.

Consequently, it is advantageous to extend the definition of the function

D9’(4>,O,4,) so that we have the property

(5) p(R) = p(R1)

and so that we can lift our restrictions on 0, 4>, and 4) , except 8 ~ 0

~~~~ First we extend the definition of dL (0) to include all values of 0 such

that 0 < 10 1 < 71 by defining

d 9’ (0) — (—l)~~
’
~d
9’ (—0) , — if < 0 < 0sin mu

t 3ing (2) we see that (5) holds. For the situation where 0 — 0 , it is

shown in [6 , p.114] that

9’ 0 —D c4), ,4))~~~ — e

— 8 —
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thus, since ~ + 4) is the fixed amount of rotation about the z—axis even

though each angle is not uniquely determined, ‘u’e are assured that for any

choice of Euler angles representing this rotation as well as any other

rotation K the density (4) is well—defined.

Before proceeding to consider an estimation problem on S0(3), we

~~ enumerate some properties of the functions D9’(R)~~ and d
~n
(0) which will

be employed in Sections IV and V:

£ 
£

9’ 9’(6) D (R
1
R2

) = D (R
1

) D  (K
2)

for any rotation~ R1 and R2 belonging to S0(3), [7 , p.281];

(7) d
~~
(0) — (_l)

n_m
d~m_ n (e) = d

~n_m
(8) 16 , p.157];

(8~ D9’(R) D9’ ( R ) , ,  = e~~4>~ (2L+l) 

~ :)C:: L)dL (O)ein4)

where M ~ —m — m ’ and N = —n — n ’ , [6, p.157). The summation is over all

L for which I9’—L’ l ~ L ~ 9’ + 9,’ and for which the 3—j coefficients of

Wigner ,
• f 9 ’ v L \  f9’ 9 ” L

4 I I and I
\nn’ N

exist; these coefficients are defined in [6 , p.120] by

I.

k i\ 
— i 

2j—k+n 1(J+k—L)I (k+9’— ~)! (9’+j—k) ! (&+p)! ~~~~ 
/2

• 
~m ~ ) ~ [~~+k+9’+l) I (j4~ ) I (j—m ) I (k-lit) I (k—n ) I J

t (9’+j—n—t)! (k+n+t)!
X (9,+p—t)I(t+k—j—p)ItI(9’—k+j—t)I~~(l) 

— 9 —
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where the suimnation is over all integers such that the arguments of all

factorials are nonnegative.

• 
• [II. An Error Criterion and Opt imal Estimates on S0(3).

In order to define an error criterion for orientation estimation, it

• is necessary to have a measure of the distance between two orientations.

~~ We will first describe such a measure, using quaternions [11] . We recall

that a rotation about an axis in the direction of a unit vector [L ,m,nJ ’

through an angle ~ is represented by the (unit) quaternion

S q = 1q1,q2,q3,q4]’= [cos -~~, ~sin ~~, msin ~~, nsin .
~
.j

Given two orientations, the minimal angle in radians required to bring

one into the other is a natural measure of distance between them and defines

a Riemannian metric on SO(3). If the orientations are represented by the

quaternions , q and p , and the minimal angle is denoted by p(q,p)

then we have q ’p = cos 4p(q,p) . As 4(1 — cos p) is a monotone increasing

function of p , a measure of distance between p and q can be def ined

to be 4(1 — cos p(q,p)) = 1 — (q’p)2 . It can be shown that if the

orientations, q and p , are described by the 3x3—dimensional orthogonal

matrices, Q and P , then this measure of distance can also be expressed

as — tr PQ’)

We are now ready to define the error criterion for orientation estimation.

Let q be a random quaternion and p its estimate. Then a measure of the

estimation error is

• (9) J(q,p) - E(l - (q ’p) 2)

- iO-

h1.•. ~~~~
‘ ‘~~>
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If the probability distribution of q is given, the estimate p which

minimizes J may be obtained from observing that

J(q,p) = 1 — p ’ E(qq’)p

I It is well—known 112, p.142] that the quadratic form p’Vp of the positive

• definite matrix V = E(qq’) is maximized when p is the unit eigenvector

) associated with the largest eigenvalue A of V . ~toreover, the maximum value

is A . flence,

mm J(q,p) = 1 — Q’E( qq’)Q
J p

= 1 — A

where A = the maximum eigenvalue of E(qq ’)

= the unit eigenvector of E(qq ’)
)  associated with A

The probability distributions on SO(3) are expressed in terms of the

Euler angles (4),0,4)) in this paper. The following relationships [10, p.38O]

between the quaternion components and the Euler angles will have to be used

to calculate the optimal estimate ~ and its estimation error 1 — A

0
S 

q
1

c05 05 
2

- 
1 (10) q2 

= sin cos

4 q3~~~~
in~~~sin~~~~

q4 
= cos -~~sin 2

Once vector ~ is determined we can immediately determine the Euler angles

(q~ 6 ip) for the optimal orientation estimate from the relations:

• 
- — I l —

‘I

_ _ _ _  - 
L~ ~~~~~~~~~~~~~~~~~~~ ~~

- ~~~~~ S 

- • 
S 

-
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A 2 2cos0 2(~1 +Q4
) — l ,

A 1 A A A A ‘ 1 A

• (ii) sin4) = — 
~~ 

(q
3q1 + q2

q4) , 
cos~ = ~ 

— ~3q4)
A A 1

sin4) = ~~
- (Q2~4 — ~~~ , cos4) = ~ (Q1q~ + ~3~4) 

-

S

L~~= /  2 A 2  A 2 A 2
S 

~~~i 
+q~ )(q 2 +q3 

)

S which are the inverse of the above set of relationships (10).

S IV. Estimation for Rotational Processes with Rotational Noise.

Suppose s is a rotation of a rigid body with Euler angles (4),0,4))

and v is a second rotation with Euler angles (c,~ ,6) . We can obtain

a product rotation in with Euler angles (4),0 ,4)) by the successive rotation

of the rigid body by s and then v . We denote this product by

(12) m(4) ,O ,4)) = v(c ,r~,6)

Our reason for writing v to the left of s is to be consistent with the

matrix equation resulting by the use of the orthogonal matrix representation

where the matrix S representing s is pre—multiplied by the matrix V

representing v to obtain M = VS.

~~ Performing the indicated multiplication when each matrix has the form (1)

and equating respective elements, we may obtain nine relationships among the

Euler angles of in, v, and s, which uniquely determine (4),0,4)) in terms of

(c ,~~,6) and (4>,0,l~P) . The relationships are very cumbersome and thus will

not be displayed here.

We now consider a rotational signal process which is a sequence of rotations

def ined on SO(3) whose terms are related by the equation

— 12 —
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(13)

where Wk is a deterministic rotation whose Euler angles are known. Let

S {m,~}~ and {v
k
}
~ 

be sequences of rotation on S0(3) that constitute a
k—i k—i

measurement process and a measurement noise process, respectively, such that

5 J  (14) lfl
~K

= V
k

O S
k

~~ The first estimation problem to be solved can now be stated as being that

of finding the optimal estimate of 8k given the set of measurements

k AS m = {ml,...,mk
} , k = 1,2,...

using the error criterion (9). From our results in Section iii we recognize

4) 
the fact that in order to det ermine the optimal estimate which involves

conditional expectations, it is crucial to be able to produce the conditional

density p(ek lmk) , which we note can be calculated, by Bayes rule from

k k—i(15) p(s
kIm ) = C

~~
(mt ~~~~~~~ ~

where Ck is a normalizing constant.

It will now be demonstrated that REED’s introduced in Section II are

S ideal ones to use in computing this conditional density. Suppose 
~~ 

and

4 {v } have REFD (N) (if they have different orders , we can let N be the maximum

order and by inserting zero coefficients make all densities of order N) which

are described , r espectively, by

N £
(16) p(s0) — exp ~ a~~ D

9,
(so)~~9— 0 m,n=—R

S 

(17) — exp b~~ D2’(Vk)ma&—O m,n —2.

I -13 -
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Let us further assume that the conditional density p 
~~k 1’ 

in ’) is a

REFD (N) , denoted by

k—i £ k—l £
(18) p(s

~~,1~ 
in ) — exp 

~ L ama D 
~ k—1~mn£‘.‘O m,n— 9 ,

J 

Under these assumptions we will show that p(sklm
k) is also a REPD(N)

and at the same time exhibit a recursive formula for the Fourier coefficients

a
S 

- 
sin

rrom (13) and (14) and the group property of S0(3), V
k 

and can

be expressed as
—l —l

Vk - Ink e 5k and Sk i  = Wk l  °

so that , using (18), p(sklm
k_l) is a REED:

N
k—i £,k—l £ —i

p(skim ) = exp j~ ~ 
ama D ° 

~k~mn£ 0  m,n=—9.
N £ £
r r £,k—l v Z —l 9.

(19) = exp L L ama L D (vk_l )ms D
£—0 tn,n— 9. s”—L

= exp~~ 0 m ,~ =—9~ 
[
~J9, a~~~~

1 D~ (w~~
1)~1J D

t(sk)

for the second equality , property (6) was used while the third equality is

obtained by a change in summation indices .

Likewise, the conditional density p(sik l s k ) is a REFD :

N k —l
p(~~ I 5k )

~~~exp~~ 
X bL D9,(m,~~o s k )

9,.’O m,n=—~

(20) - exp~~ 

~,flL [~!_~ 
b~~~~ D~ (m~)J D~(8;

l
)

= exp~~ ~,L.L [( l)1n+n~~~~b~k D
9,

(Ink)j  j  Dt(Sk)ma ‘

— 1 4 —

~
- 

-
- ,. S;’~ 
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the last equality results from a change of summation indices and the fact that

~~ 8k 
has Euler angles (4),0,ij) then s ’ has Euler angles (rr4,0,ir—4))

so that, using (2) and (7)

I Dt(8 1) = isi~~(_l)
1
~e

)
d~~ (0)eu1~4)

- 

I = (—l)~~~i~~~~e~~~d
9, (e)ei~S —n hI

•~~n

4 — ( l ) in+flD ( sk
)_n ,_m

- ,  Substituting (19) and (20) into (15), we obtain the REID

i’ (sR I m~) — c 
k ~~ m,~~ -L IIj Z 9, 

{a~~~~
1 D~ (v

~~i ~

+ (-1) b~ D (mk)J ,
_n}] ~ ~ k~mn

L

Thus p(s
kln

k) is a REFD (N) whenever p(ak_l inl
k_]

) is a REFD (N)

but since

F p(s
0 1m0) ~ p(s0)

is itself a REFD(N) by induction we have proved the following:

• — Theorem 2. If {
~ 3 is a sequence of random rotations on S0(3) where

\

k

8k+l ’
~k

°5 k

for some sequence of deterministic rotations and ni
~ 

is the corresponding

S 
measurement sequence where each has been corrupted by a noise rotation V

k

such that

- . IflI~~~~Vk
o S

k

— 1 5 —

r ~ S

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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- then if a~ and {vk} have REED ’s given by (16) and (17), respectively,

• then , f or k — 1,2,..., the conditional density p(sk~m
k
) is a REFD(N)

S of the form

N £k. ~
.

• p (sk ln ~ — exp 
m,n._

ma D

S 

~~~ where the coefficients a~~ are determined recursively by the formulas

= {a 4D9.(w
~~1
)
~~ 

+ (_1)in b
~~...m

D’(m
k)j,_n

} , £ # 0, k — 1,2,3,... ;

- . and a00 is a normalizing constant .

S This theorem enables us to calculate the sequential conditional densities

• 
by updating recursively a finite and fixed number of parameters. Using the

S 

J conditional density p(Sk $m~) at time k , the optimal estimate of the

orientation can be determined as suggested at the end of Section III. Namely

we first compute the conditional covariance matrix E(q (k)q ’ (k) Im ’~) where

q o )  is the quaternion for 8
k 

whose components expressed in terms of the

Euler angles are given by (10). Then we use some standard numerical method

such as the power method [13, pp.147—150] to compute the largest eigenvaiue 
S

A(k) and the associated unit eigenvector ~ (k lk)  . The Euler angles of the 
S

optimal estimate may then be determined from ~ (kj k )  through (ii). The
S 

- estimation error is 1 — A(k ) .

- V. Estimation for Rotational Processes with Additive White Gaussian Noise.

A second model for which the estimation problem can be solved using REED ’s

is described by the equations

(21) 
~ i*i-i — W k

(22) — h(S
k) +

- 1 6-  - 

p ~
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where is again a sequence of random rotations belonging to 50(3) and

{
~~

} is now a sequence of p—dimensional vectors of obser ved outputs of the

signal process, h is a vector—valued function defined on S0(3) that is

square—integrable, and {vk
} is a sequence of p—dimensional independent 

S

Gaussian vectors, each with zero mean value and covariance matrixa R.K 
- E[v

k
v
k

’]

The completeness property of the functions {D
9,
ma} assures us that, for

• any C > 0 and for each component h~ of function Ii , there exists an

integer and coeff icients h~~ such that

- 1  M £I I t h ~(8) — ~ h~~ D
9,
(S)ma I ’ 1 2 , j — l,2,...,p

L 0 m,n~~9.

L 
Let M — m1ix M~ and denote by hM(s) the p-dimensional vector whose components

- are h~ (S.) where

N 2.
• h.~(S) — II~~ D k s )sin ma

9,—O m,n— 9,

S 1’~
, 2 . — 0, . ..,M~ ; — 9 .~~~ m ,n~~~ 9.

4 5- 0 , otherwise

Each noise vector has density

- (27t)~~~
2(det ~~~

‘
~
‘2exp {_ 

_1~t~~
v
~ 
v~}

where R~k has components and v.,~ has components v~ so if we replace S

4 (22) by

- 17-
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mk hM(s ) + V

then

p(m~j s~ ) - (2w)~~”~
2 (det R~~~

’
~’2 exp ..

~4 ~ i~~ ~ - ~ h
~~D~

(sk)]
i,j1 9—0 m,n—L

I - 

mLt
’
~~ 

D
~

(s
k) Il}

(23)

— (2ff)~
’
~
2(det Ri~)

’
~
’
~exP{C0 + ~ 

C~~D
9,(S~)

S -
, £“O rn,n=’—t

+ 
U ’ —0 m,~ =—& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

) where S
S 

l~~~ l i i iC — L  K m0 2 k k
- 

i—i

S 

C2’ = ~ ~ Ini~ h~’~ + ~i h2
~i]sin 2 

~~~~ 
L k sin k sin

C9,9, (m,n ,m ’n ’) = — ~~~~~~~~~~~ ~~~~

But properties (7) and (8) imply that

(24) D9,(s
k
)maD9,

(s
~~m~n I = 

1
(2L+1)(-l)~~~ (~ ~: ~ ~: ~

) DL(s
k
)_N,_N

so that the expresion given in (23) is a R.EFD(2M)S. Mow, if p(a Jm
1
~~)k—I

is a REFD (N k_l) then by (15) p (S~~’mk) is a REFD (max{2N,N.K_ l )) ~ so if

has a P~EFT)(N) given by (16) then (8 151
k
) is a REFDGIax{2M,N}) for any k

S 

- 
with a finite number of recursive formulae existing for the coefficients.

- ig-

~~~~
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S These formulas will ‘~ot be enumerated here since they are tedious to list for

I an arbitrary integer M

Tie exemplify this procedure for p — 3 where the vector—function

h has a very simple form so that the computations are not unduly ç~ sbersome:

1co~~ k
i 

h(sk) = cos 
~k sin

[cos~ Pk ain Ok

the components being three of the direction cosines of the matrix representation

of 8k of the form (1).

Let us assume that {Vk} is a vector Gaussian process with each term

vk having zero mean and 3 x 3 covariance matrix Rk , and that has the

REFD (N) (16). Now

:~
p (lnk I S k) — (2Tr)’~”

2(det R,~)’/
’2exp ~~~~ — h(Sk)J’ RkIrnk 

— h(s
k

)]

Using (2), (3), and (8) in the following calculations, we first write h(sk)

in the form

L_. I 

D
1(8

k)

h(sk) - 
~~

(D1(s
k)~ 0 

+

41 11D1(sk) + D’(sk) 5] 
5

01 0,—l

5

~~~~~~~ 

so that

L

S _ - 19 ...

4 -•n



Lm.K h( k)] ‘Rk [m.~~
h(sk)] — E ( 8 k)oo) 2R + 2 E~~~’(5k )oo) [m

~
_
,,~~

(D1’(a
k

) lO

+ D1(s
k)_l,o

) ]42+2(m
~
_D1
(Qoo ][m

~
—
,,~

(D’(s
k)ol+D’(sk)Q,_l]43

- 
+ [m~—

,,~~(D
1 

~~~ 10+D1 
~~~ —l ~~ ~ 

242+2 [m~—~~ (D~ ~~~ ~~~~~ —1 ,

I 

x

• 
4 - 2 

~ ~~~~~
D
1(s

k
)oo- ~~ i ~1

, 
i,j—i i—i i—i

— /~ i ~ m~R~
2
D’(sk)...l ~ 

—/~ i ~~ 
m
~
R
~
3
D’(s

k
)
ol 

— Ii i 
~ 
m
~
R
~
3D’(s

k
)
o,_l

t S i_i j—i

+ 4 R~1[DO(sk)oo+2D
2(sk)oo]~~!~ i 42[D

2(ak)lo+D
2(sk).lo ]

• +A i 43[D2 sk)o,..l+D
2 sk)ol]—4

2[
,~ 

D2(sk)20+ ~~~~~~~

— D°(sk)oo]+
,,~ ~~~~~~~~~ 

-
~~ 
43[D2 sk l l

_ D s
k l l#D~~sk l ,_l

• 
~~~~~~~~~~~~~~ 

4 D2 skOO
_D°skOO +

~~ 
D2 (sk)o ,_2 ].

S 

S

Assuming that

N &• k—i v r R ,k—l 9~in ) — exp L L ama D 
~~k—l~uin1—0 in,n——~.

—20—

— - S - •--
- .

~~~ ~~~~• 
S 
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S 

and using (15) and (19) we obtain

N 9.
r r) = exp L L ama D

-
, - 9.—0 m,n ’—9.

J 

where a~~ is a normalizing constant,

S 

a~~ = — 21 51
k 
R1~+

a~~~= -  ~~~i 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~ , k+nH 1, m a — 0  ;

= - ~ i~~~sm + ~~~a~ ’1
~~~D’ (w

~~l
)j  i ~~~~

. j = 1

(25) aOO = 4(2Rt’ - a~
2- R~

3) + 
j~~ 2 

a~6~~
1 D2 (W;~1)~ 0

a~~ = ~~~ ~~~ + ~~~~~~~~~~~~~~~ , sin = 0 , I n*n l = 2

= 2 l n I , 2)~ 36~~~I , 2)

- i + a~’~~
1
+ ~~~~~ D

2 (w~~1 ) , ma = 0

1m4•n I — 1 , p = 2~S ( I m I , l)~36 ( i n I , l)

a~~ — — 

~ 
‘
~? 

+ 
~~_2 ~ k..l jm l~~ I — 1 , Im i + ~nI 

— 2

9k 2. 9k £ —l
a = 

~ 
a~~ D (Wk_l)j 

otherwise.

[We have used the symbol tS(a,b) to denote the number 1 when a — b and 0
-
- I otherwise]. Now optimal estimates can be obtained exactly as in the last section.

— 2 1 —
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VI. Detection for Rotational Processes

In this section we consider the detection problem of determining the

presence or absence of a rotational signal process using each of the measure-

ment processes given in the past two sections. It will be shown that the

J 

likelihood ratio of the presence to the absence of the signal can be

S efficiently ascertained when REFD’s are utilized. 
.

5

Let us first refer to the rotational signal and measurement processes

S 

- ~~~~k
3 and fm.K} described by (13) and (14) where and {vk} have RE FD’s 

I
given by (16) and (17) which are independent processes. We now consider the

following hypotheses that the signal rotation is present and absent

respectively:

H : m.~~~~ V . o S

I) 

1 k k  55

H

The likelihood ratio that we want to compute is given by

k
k ~ p(m 1H

1)L ( m ) =  kp(m 1H ~
)

Since and {v
k
) are independent , we have

-
— 

p(mk ,H 1) = E [p(mkIH 1, s’5tH1J

k N £ £jS 
= E f II exp ~ b D

9,(m~ o
j—i £—0 m,n——2’

~
, ,_

~
S while

k N 9.
p (ni~I H0) = 11 exp ~ b~~ D” (mj )ma

S j 1  L—0 m,n——9.

— 2 2 —
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- 
so that

L(mk) = E[exp ~ ~ b~~ [D9,(m~ o S~~~~) — D~’(m~) ]
Ju l £ 0  m,n.~ R.

k
= E[exp ~ W(s~~J~m~fl

) 

j=l

where

(26) W(s .~ J~ m~) 
£~ 0 m ,~ =— 2. 

b~~~[D 9, (m~ 
~j~~ma 

— D9.(m
j
)ma]

S I We now state a lemma whose proof is identical to that of a corresponding lemma S

proved in [1, pp.14—iS] with the circular function replaced with the functions

D9,(s)
sin

Lemma 1. Let {S
k
} be a random signal process on S0(3) and {vk

} a white

noise process on S0(3) which is independent of 
~~k

3 having the rotational

S 

exponential Fourier density (23). Let

T {t
i~•~~•~

t
q
}

= ~~~~~~~~~~~

1— ST — 

~~ ~~~~~~ 
}

II 1 q

where q,q’,t~ , and t~ are positive integers. If the measurement process is

described by si k = v k o  5k then the conditional joint probability density is

k E[exp H(l ,k)IST,ST,]p(ST I ST
’)

p(~~~m 1 ST,) 
— E[exp H(l,k)IST,]

— 2 3 —

S 
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- 
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S 

k
where H(l ,k) ~ W(s .,j,m

3
) and W(s1,j,m .) is given by (26).

3=1 •~ J

We can now obtain a recursive formula for L(Jn
k) by using the smoothing

property of a conditional expectation and Lemma 1:

I L(m~) = 
J
E[exP~~ W(S

J
,j,mj)ISk

= 
J
E[exP~~ W(s.~ 3~

m
~)Jsk

]exP W(s
k
,k,

~~
) p (s

k
)dsk

k—i
= 

J
EtexP~~ W(s.,j,mj)]p(SkIm

k i ) exP W(sk ,k-.,mk)dsk

f = E[exp H(l,k—1)] J p(9ktn’
~~
’exp W(sk,k,n?)dsk

k-I. k.
= L(m )Q(m )

S 2-it -ii 2ir
where J f(s~ )ds~ ~ J J J f(p.~,Q~ ,~~ )sin Ok k dOk~~k.

and Q(mk ) 
~ J p(s~ J m

k
~~ )exp W

~
Sk ,k,n~K )dsk

-
~ The integral Q~m

k) can be evaluated in the following form which is

obtained with the assistance of (19), (26) and (6):

Q(n~~) = J exp[W(sk ,k ,m,K ) + ~ ~~~~~ D
9,(w

1o sk
) l d

~k£ 0  m,n~”—2’

J exp ~ Z {a~f~~ D
9.
(Wk~l

)jm
D
9,
(S
k
)ma

~ £“O m,tv1~~2’

:1 

+ b~~
[D2.(

~~
)
~ j D9,(s ’ )j~ 

— D
9,
(u1,
~
) ]}dS

k

— 24 —
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= exp{ - ~~ b D
9.
(mk) } • J exp ~ C2’1’ D2’(S~) ds ~

9.=Q in,n=—9. ,‘ i 0  m,n .—2’

where C~~ = 

~ 
~~~ D

9.(w~~1)3~ 
+ (-l)~~~ ~~~~ D

9.
(ink
)
j,_n

}

) 

Let us now study the detection problem that results from using the

signal process discussed in Section V described by (21) and (22).

Suppose we have the hypotheses

H
1 

:iuk =h(sk) + v k

HQ :m k
V
k

Using (23) it is found that the likelihood ratio is

) k
S 

L(m ) = E[exp H(l ,k)]
S 

k
ll(l,k) = ~ W(s3,j,m .)

j=l -~

M £ M 2. 2.’
W(s.,j,m •) = ~ C~ D9.(s ) + ~ C2’2’ (m,n,m’,n’)

~ £ 0  m,n —9. £,2.’=O m,n=O m’,n’=O

X

C9.9. (m ,n,m ’,n ’) = -4  ~ R~~ h~~ ~~~~
1,3-1

An argument identical to that used in the previous detection problem

yields

-t
—2 5 —

J S I

St

• 
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S 
LOnk) = J E~e.xp R(l,k)I s.K ]p(sk)dsk.

— L(m~~
1) J p(s

1’~
m~
’
~~)exp W(sk , kS, nik )dsk

) 

= L(m~~~)Q(m~’)

Since it has been shown in the last section that the conditional density

is a rotational exponential Fourier density of the form

N 9.
exp ~~ a2’1’ D2’(~ )

S 
9.=0 m,n=—9.

S 

where the coefficients can be computed recursively, we can write the integral

j  Q (m~
’) in the form

Q(~’) = J exp 
~ C~ D2.(s

1’
)

9.=Q m,n=—&

H 9. 9.’

+ ~ C2’2. (m,n ,m ’,n ’)D 2’(s
1’

)~~ D2. 
~ k~ m ’a ’

9.,9. 0 m,n —9, in ,n —Z

N 2’
9.+ a D (S

k 
)~~~~~ ‘1

~
’k2.0 m,n~~2’

k
S 

- Consequently, Q(m ) is of the form

S J exp~~ 
m ,~ = 2 ’

n mfl D
9.
(s
1’
)~~ ds1

where P — max{N,2’~} and the coefficients which are functions of a~~

C~ , h~~ , , and are obtained using (24). Hence the computational

scheme for the likelihood ratio LOs1’) is finite dimensional. Rather than

attempting to exhibit the formulas in the general case we will produce them for

the simple example at the end of Section V where

— 26 —
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S 
S

S 

cos 0 k
h (sk) = cos sin 0

1’
cos *1’ 

sin

I 

and {v
1’
} is the Gaussian with zero mean and covariance 

matrix K1’

Since it was shown that the conditional density p( S~~m1’) can be

written as

N 2. 2.
S p(s

1’
m ) exP L L ama D(Sk)ma

S 

9.0 m ,n _ 9 .

S 
with the coeff icients given by (25), it is easily verified that the likelihood

ratio is

j  L(m k) = E[exp H(1,k)J

k
ii(l,k) = ~ W (s~~1~m3

)
3=1

W (s3,j,m3
) = 

t~0 m,
L_

~~~~ 

D
9.(S

j
)
=~ 

— 
4~~~~~Rr ~;

and

T ~ 
Q(m

~) 
= exp{ag~ + a~~~~~ - 4 ~ s

- 

x J exp ~ C~~ D9.(Sk)madSk

S 

Z 2— 1 m ,n” —R-.

c~~ — a~~ + ~~~a 1 D9.(w
1’1

)j~

- 2 7 -

-~ 
- 
-

~~~~~~~-•~~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ 
~~~~
_2- “~~ --



FT 
‘- —-

~

‘-—-‘-

~~~

-‘— S -. -• 
- - - --5.- S ’~~~~~ - _,_,—.. 

- 
5 - S

S •~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !_~~~~~ ~~~~~~~~~~~~~ I 
‘~~~ ‘~~~~~~~~~~ ‘ ‘ ‘~ “‘ S

VII. Conclusions

In this paper we have formulated and solved estimation and detection

problems for discrete—time processes that arise on S0(3). The. signal

process s~~1 is assumed to be obtained from 
~k 

by a concatenation

which is the successive rotations 5k and wk where the latter is a known

rotation, -while two types of measurement processes have been used: (i)

the observation m~ç is the concatenation of Sk 
and a noise rotation

and (ii) the observation m.K is a smooth function of 
~k 

corrupted by

additive white noise.

S ~n error criterion which differs from a least squares criterion such

as appears in [8]and [9] has been presented together with the resulting

optimal estimates. In addition a new density function, the rotational

exponential Fourier density has been introduced which can be used to approxi—

mate probability densities on SO(3) that are continuous.

Since this class of density functions is closed under the operation of

taking conditional densities, we have been able to obtain recursive schemes

for optimal estimation and detection for a rather large class of problems.

However recursive schemes for the analogous problem when the driving term

wk is a stochastic process have not been resolved since these densities do

not have the property of being closed under convolution. Perhaps a different

F ’ representation for densities on S0(3) or a different model of the signal process

can be found that will yield a recursive solution to this problem .

It is believed that the procedures of this paper can be extended to S0(n)

S 
for n > 3 by using the appropriate special functions defined on S0(n) that

-

~~~~~~ 

- are analogous to the functions D~~ on S0(3).
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In ;his paper~~ will presents a new representation of a probability
density function on the three dimensional rotation group, SO(3), which
generalizes the exponential Fourier densities on the circle. As in the

S 
- circle case, this class of densities on SO(3) is also closed under the

S 
operation of taking conditional distributions. Several simple multistage
estimation and detection models will be considered in this paper. The
closure property.. enables us to,~determine the sequential conditional
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denøities by recursively updating a finite and fixed number of coefficients. ‘~~

It also enables us to express the likelit.ood ratio for signal detection j
explicitly in terms of the conditional densities. 

-

An error criterion, which is compatible with a Riemannian metric,
will be introduced and discussed. in this paper The optimal orientation
estimates with respect to this error cr er on will be derived for a given
probability distribution, illustrating how the updated conditional densi-
ties can be used to sequentially determine the optimal estimates on S0(3).
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